The relation between pressure and volume

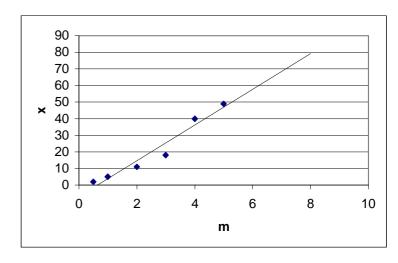
Lab-report in Physics Preformed 98-02-25

In this experiment we are to prove the relation $p_1v_1 = p_2v_2$. To prove this we use a piston and weights of different masses. The piston is then pulled down by the weights and we measure the distance (x). We then make a relation between the mass and the distance x. Here is the formula derived:

$$\Delta p = \frac{mg}{A}$$
 m is the mass of the weight A is the area of the piston d is the initial distance, where the piston was initially $p_1v_1 = (p_1 - \Delta p)v_2$ x is the distance the piston has moved $p_1Ad = (p_1 - \Delta p)A(d + x)$
$$p_1d = (d + x)\left(p_1 - \frac{mg}{A}\right)$$

$$p_1d = (d + x)\left(\frac{p_1A - mg}{A}\right)$$

$$p_1 dA = (d+x)(p_1 A - mg)$$


$$d + x = \frac{p_1 dA}{p_1 A - mg}$$

$$x = \frac{p_1 dA}{p_1 A - mg} - d$$

So now it is just to collect data and look for a pattern and see if it match the formula. Here is the data:

Area =
$$7,94.10^{-4}$$
 m²
 $p_1 = 101300$ Pa
 $d = 0,03$ m
 $g = 9,82$ m/s²

m (kg)	x (mm)
0,5	2
1	5
2	11
3	18
4	40
5	49

As you can see this curve is most likely to be linear, and so also according to the formula.